Publikationen

2022

  • Fleischer, Y. & Podworny, S. (2022). Teaching machine learning with decision trees in middle school using CODAP. In U.T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th international conference on technology in mathematics teaching (ICTMT 15) (pp. 280–281). Danish School of Education, Aarhus University.
  • Podworny, S. & Fleischer, Y. (2022). An approach to teaching data science in middle school. In U.T. Jankvist, R. Elicer, A. Clark-Wilson, H.-G. Weigand, & M. Thomsen (Eds.), Proceedings of the 15th international conference on technology in mathematics teaching (ICTMT 15) (pp. 308–315). Danish School of Education, Aarhus University.

2021 

  • Biehler, R., & Fleischer, Y. (2021). Introducing students to machine learning with decision trees using CODAP and Jupyter Notebooks. Teaching Statistics, 43(S1), S133-S142. https://doi.org/https://doi.org/10.1111/test.12279
  • Biehler, R., Fleischer, Y., Budde, L., Frischemeier, D., Gerstenberger, D., Podworny, S., & Schulte, C. (2020). Data science education in secondary schools: Teaching and learning decision trees with CODAP and Jupyter Notebooks as an example of integrating machine learning into statistics education. In P. Arnold (Ed.), New Skills in the Changing World of Statistics Education: Proceedings of the Roundtable conference of the International Association for Statistical Education (IASE), July 2020. ISI/IASE.
  • Bovermann, K., Fleischer, Y., Hüsing, S. & Opitz, C., (2021). Künstliche Intelligenz und maschinelles Lernen im Informatikunterricht der Sek. I mit Jupyter Notebooks und Python am Beispiel von Entscheidungsbäumen und künstlichen neuronalen Netzen. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 319-319). DOI: 10.18420/infos2021_w283 
  • Frischemeier, D., Biehler, R., Podworny, S., & Budde, L. (2021). A first introduction to data science education in secondary schools: Teaching and learning about data exploration with CODAP using survey data. Teaching Statistics, 43(S1), S182-S189. https://doi.org/https://doi.org/10.1111/test.12283 
  • Höper, L. (2021). Developing and evaluating the concept data awareness for K12 computing education. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY, USA, Article 41, 1–3. DOI: https://doi.org/10.1145/3488042.3490509
  • Höper, L., Hüsing, S., Malatyali, H., Schulte, C., & Budde, L. (2021). Methodik für Datenprojekte im Informatikunterricht. LOG IN: Vol. 41, No. 1.
  • Höper, L., Podworny, S., Hüsing, S., Schulte, C., Fleischer, Y., Biehler, R., Frischemeier, D. & Malatyali, H., (2021). Zur neuen Bedeutung von Daten in Data Science und künstlicher Intelligenz. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 345-345). DOI: 10.18420/infos2021_a230
  • Höper, L. & Schulte, C., (2021). Datenbewusstsein: Aufmerksamkeit für die eigenen Daten. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 73-82). DOI: 10.18420/infos2021_f235
  • Höper, L., & Schulte, C. (2021). Datenbewusstsein im Kontext digitaler Kompetenzen für einen selbstbestimmten Umgang mit datengetriebenen digitalen Artefakten. INFORMATIK 2021.
  • Hüsing, S. (2021). Epistemic Programming – An insight-driven programming concept for Data Science. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY, USA, Article 42, 1–3. DOI: https://doi.org/10.1145/3488042.3490510
  • Podworny, S., Fleischer, Y., Hüsing, S., Biehler, R., Frischemeier, D., Höper, L. & Schulte, C., (2021). Using data cards for teaching data based decision trees in middle school. In 21st Koli Calling International Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY, USA, Article 39, 1–3. DOI: https://doi.org/10.1145/3488042.3489966
  • Podworny, S., Höper, L., Fleischer, Y., Hüsing, S. & Schulte, C., (2021). Data Science ab Klasse 5 – Konkrete Unterrichtsvorschläge für künstliche Intelligenz unplugged und Datenbewusstsein. In: Humbert, L. (Hrsg.), INFOS 2021 – 19. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn. (S. 327-327). DOI: 10.18420/infos2021_w278 

2020 

2019 

  • Biehler, R. (2019). Software for learning and for doing statistics and probability – Looking back and looking forward from a personal perspective. In J. M. Contreras, M. M. Gea, M. M. López-Martín, & E. Molina-Portillo (Eds.), Proceedings of the Third International Virtual Congress of Statistical Education. University of Granada. www.ugr.es/local/fqm126/civeest.html 
  • Opel, S., Schlichtig, M., Schulte, C., Biehler, R., Frischemeier, D., Podworny, S. & Wassong, T. (2019). Entwicklung und Reflexion einer Unterrichtssequenz zum Maschinellen Lernen als Aspekt von Data Science in der Sekundarstufe II. In: A. Pasternak (Hrsg.), Proceedings zur 18. GI-Fachtagung Informatik und Schule „Informatik für Alle” (S.  285-294). Bonn: Gesellschaft für Informatik. 
  • Schlichtig, M., Opel, S., Schulte, C., Biehler, R., Frischemeier, D., Podworny, S. & Wassong, T. (2019). Maschinelles Lernen im Unterricht mit Jupyter Notebook. In: A. Pasternak (Hrsg.), Proceedings zur 18. GI-Fachtagung Informatik und Schule “Informatik für Alle” (S.  385). Bonn: Gesellschaft für Informatik. 

2018 

  • Biehler, R., Budde, L., Frischemeier, D., Heinemann, B., Podworny, S., Schulte, C., & Wassong, T. (Eds.). (2018). Paderborn Symposium on Data Science Education at School Level 2017: The Collected Extended Abstracts. Paderborn: Universitätsbibliothek Paderborn. doi.org/10.17619/UNIPB/1-374 
  • Biehler, R., Frischemeier, D., Podworny, S., Wassong, T., Budde, L., Heinemann, B., & Schulte, C. (2018). Data Science and Big Data in Upper Secondary Schools: A Module to Build up First Components of Statistical Thinking in a Data Science Curriculum. Archives of Data Science, Series A (Online First), 5(1), 28. http://doi.org/10.5445/KSP/1000087327/28 
  • Biehler, R., & Schulte, C. (2018). Perspectives for an interdisciplinary data science curriculum at German secondary schools. In R. Biehler, L. Budde, D. Frischemeier, B. Heinemann, S. Podworny, C. Schulte, & T. Wassong (Eds.), Paderborn Symposium on Data Science Education at School Level 2017: The Collected Extended Abstracts (pp. 2-14). Universitätsbibliothek Paderborn. https://doi.org/http://dx.doi.org/10.17619/UNIPB/1-374 
  • Heinemann, B., Budde, L., Schulte, C., Biehler, R., Frischemeier, D., Podworny, S., & Wassong, T. (2018). Data Science and Big Data in Upper Secondary Schools: What Should Be Discussed From a Perspective of Computer Science Education? Archives of Data Science, Series A, 5(1), P26,-18.
  • Heinemann, B., Opel, S., Budde, L., Schulte, C., Frischemeier, D., Biehler, R., Podworny, S. & Wassong, T. (2018). Drafting a Data Science Curriculum for Secondary Schools. Proceedings of the 18th Koli Calling International Conference on Computing Education Research – Koli Calling ’18, (17), 1–5. http://doi.org/10.1145/3279720.3279737