TEACHING MACHINE LEARNING IN SCHOOL: SOME EMERGING RESEARCH TRAJECTORIES

Matti Tedre & Henriikka Vartiainen University of Eastern Finland

October 27, 2021: Paderborn Colloquium on Artificial Intelligence and Data Science Education at School Level

1

TEACHING MACHINE LEARNING IN SCHOOL: SOME EMERGING RESEARCH TRAJECTORIES

Matti Tedre & Henriikka Vartiainen University of Eastern Finland Ilkka Jormanainen, Juho Kahila, Teemu Valtonen, Tapani Toivonen, Arnold Pears October 27, 2021: Paderborn Colloquium on Artificial Intelligence and Data Science Education at School Level

2

THIS TALK IS BASED ON:Teaching Machine Learning in K–12 Classroom:
Pedagogical and Technological Trajectories for
Artificial Intelligence EducationIEEE Access 9, 2021CT 2.0Koli Calling 2021What Makes Computational Thinking so
Troublesome?FIE 2021Machine learning for middle schoolers: Learning
through data-driven designInt. Jnl of Child-
Comp. Interaction

3

COMPUTING EDUCATION IN SCHOOL: A PARADIGM SHIFT LOOMING

4

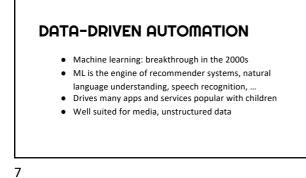
CLASSICAL PROGRAMMING (IN K12)

- The driving force of automation since the 1940s
- A mainstay of computing education
- The paradigm of the Computational Thinking
- movement of the 2000s Well suited for the needs of the sec
- Well suited for the needs of the software industry

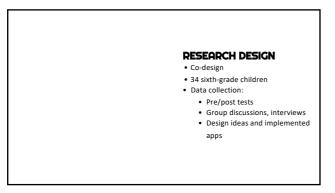
THE RULE-DRIVEN PARADIGM IN CSE

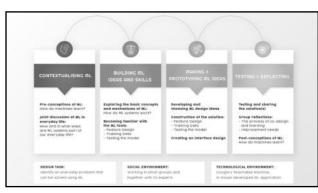
(think of Java, Scratch, imperative programming)

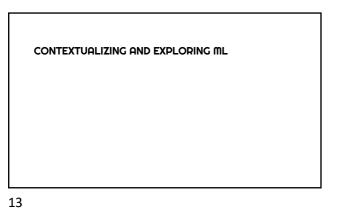
Deterministic	Well known notional machines
Stepwise	Avoid trial and error
Unambiguous transition rules	Glass-box testing
Strict syntax	Tracking and tracing program
	states
Discrete	Deductive problem solving
Highly structured	



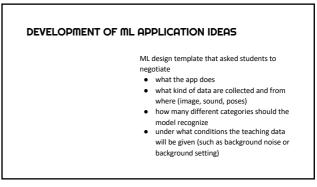
Team: Tapani Toivonen, Ilkka Jormanainen, Juho Kahila, Henriikka Vartiainen, Teemu Valtonen, Matti Tedre



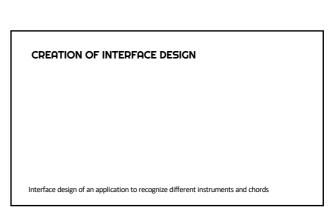


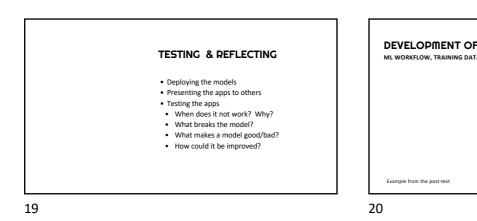


DESIGN TEAM	GTM'S MODEL TYPE AND DATA	STUDENTS' OWN DESCRIPTIONS OF THEIR SPECIFIC PURPOSE
Group 1 (3 girls and 1 boy)	Image recognition: different colour pictures derived from the Internet and colour paper	"identification of colors for color-blinds"
Group 2 (3 girls)	Image recognition: Students' own facial expressions and poses	"An app that detects your mood. If you are bored the app will tell you something to do and if you are feeling sad, the app will comfort you. "
Group 3 (5 boys)	Image recognition: pictures from the internet and text books	"When children or adults collect mushrooms and berries, they may not be sure the mushroom or berry Is toxic. So it would be good for them to have something that helps them to check it. That's why I thought it would be good to have an application that could check this."
Group 4 (3 boys)	Image recognition: students' hand-written letters	"An application that allows you to take a picture of an essay and it recognize the letters and correct errors automatically."
Group 5 (4 girts)	Image recognition: students' hand-written numbers	"It can check math calculations but also handwriting. So you show the calculations to the camera and if It doesn't understand the handwriting then you need to improve it. Then, when the handwriting is good It shows whether the calculation is right or wrong."
Group 6 (2 girls and 2 boys)	Image recognition: students' hand-written numbers	"calculator, if you can't count something on your head then you can use it."
Group 7 (4 girls)	Sound recognition: students' own speech	"Vahturi" ("watchman"): When the teacher leaves the classroom, she/he leaves the app to record the speech of the students. The app recognizes who talks and counts how much each student talked."
Group 8 (3 boys and 1 girl)	Sound recognition: students playing their own instruments	"Teachable Machine could be taught to recognize music on different instruments and different chord of guitar and other instruments"
Group 9 (3 boys)	Posenet: Students' own poses	"Door opening it with Teachable Machine that recognizes the feelings of people's from their faces, for example, if you are angry, that program also recognizes different positions "



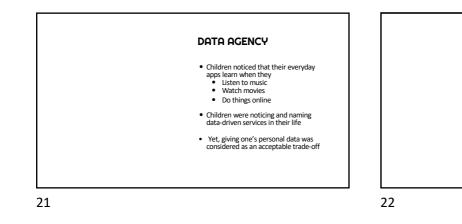
CONSTRUCTION OF SOLUTION Children created training data sets using pictures, poses and 1-second sound clips





DEVELOPMENT OF CONCEPTUAL UNDERSTANDING: ML WORKFLOW, TRAINING DATA, CLASSIFICATION, CONFIDENCE, SOFTNESS, BRITTLENESS Teems: Then it doesn't work Interviewer: Diao, Weil Timo: It took those particular chards that we taught it Hama: So, it should have been taught more Timo: Nm . Mm . Clay. So, it probably doesn't work in every situation? Hama: No Hama: It doesn't have any what do you think is the reason for that or for why it does not work? Hama: It doesn't have any what doesn't any situation. does not work? Hama: it doesn't have enough data, for example, about the piano or the guitar, or it has too much information about one and a little less about the others

Except from the interview data



DATA AGENCY

- After the process, students talked about themselves as designers, inventors, collaborators and makers. i.e. positioned themselves as active subjects in relation to ML
- They also reflected on the process of design in terms of the change in their experienced agency

1. NEW CLASSES OF MEDIA-HEAVY APPLICATIONS BECOME AVAILABLE • Anything that allows a lot of data to be collected

- o Pictures
- o Sound
- Gestures
- o Sensor data
- How would you write a Java/Scratch program that can classify gestures in "rock-paper-scissors" game?
 - Making a ML model for the same is trivial



2. FROM RULES TO DATA • Anything that allows a lot of data to be collected can be made into an ML model:

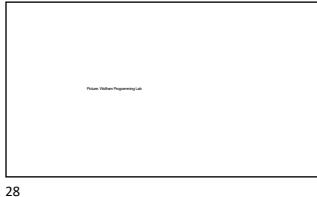
- o Children's drawings
- Sports activities
- o Gestures, poses
- o Web searches
- Cartoon pictures
- Sound clips

26

3. SHIFT IN THE ROLE OF SYNTAX

- Syntax is one of the harder bits in learning programming
- Most common data-driven learning tools at the moment are drag & drop
- But not all:
 - Wolfram Programming Lab
 - o eCraft2Learn (Ken Kahn's Snap! tools)

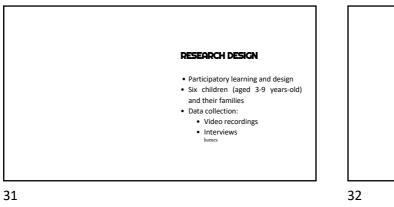
27



4. AGE-APPROPRIATENESS • ML tools scale well to different age groups • Our projects have studied different ML/AI tools with o 3-year olds (teaching the computer to recognize their moods: angry, sad, happy)

- o Primary schoolers
- Secondary schoolers
- High school students (create their own classifier)

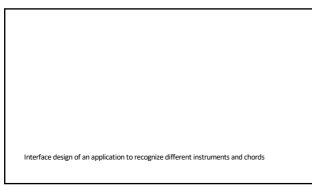
Pilot study LEARNING MACHINE LEARNING WITH YOUNG CHILDREN



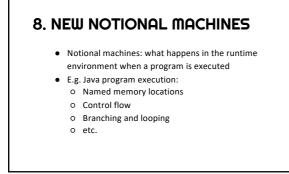
5. NATURAL FORMS OF INTERACTION • Instead of programming language (syntax-driven) interaction, many ML tools take use of • Video • Pictures • Body poses • Natural language

- "From coding to teachable machines" (Druga, 2018)
- In traditional programming one can trace program execution step by step
 - Programs are designed by stepwise rules
- In neural networks "steps" are not key
 Describing users' intentions is important for getting enough of the right kind of data for the job

34



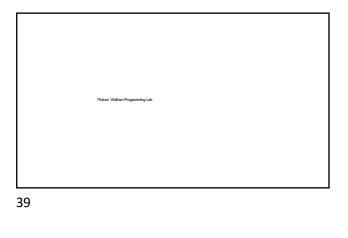
 ML models are extremely opaque: individual weights and parameters make no sense to humans

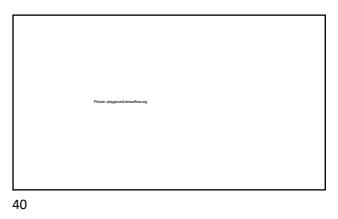


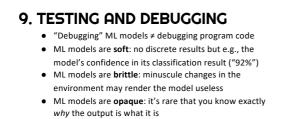
8. NEW NOTIONAL MACHINES

- What kinds of notional machines are needed for describing...
 - Passing data through a neural network?
 - o Training a network using a training algorithm that adjusts weights to realize a function?
 - o Massively parallel systems: thousands of matrix
- cores?
- The problem is: We don't know

38







- A model isn't even a thing that can be right / wrong

9. TESTING AND DEBUGGING

- In traditional programming tinkering and trial-and-error are discouraged
- In ML trial-and-error is typical of searching the optimal hyperparameter and feature space
- Beware AI alchemy!

44

10. GOODNESS OF SOLUTIONS

- Trust in ML models cannot be based on correctness and verification
- ML solutions are, at best, "probably approximately correct"
 - Their goodness can be statistically determined

45

10. GOODNESS OF SOLUTIONS

- Reductionism is lost
- Emergence dominates
- Complex systems have properties that rise from the interactions of massively many interacting parts
 Neural networks

46

11. STE(A)M INTEGRATION

- Epistemology of rule-based programming: deductive, positivist
- Epistemology of data-driven computing: inductive, falsificationist
- Empirical research is of the latter type
- Of course there are deductive parts!)

11. STE(A)M INTEGRATION

- Messing about in science:
 - Data from bicycle sharing in Chicago
 - Language corpora from Dr. Seuss, Taylor Swift
 - ML models of mango sweetness, mango quality, and manga market
- mango marketML-based learning environments offer high degrees of
 - freedom for experiments

12. BANISHING MAGIC

- Tenet of technology education: Teach the student how the world around them works
- But how do the following work:
 - TikTok's recommendationsFace recognition
 - Speech recognition
 - Translation

49

12. BANISHING MAGIC

- ML isn't magic
- ML systems are not intelligent
- They are cleverly designed technology trained with copious amounts of data

50

13. ETHICAL AND SOCIETAL IMPLICATIONS

Accountability

Democracy

Veracity

• Etc.

- Privacy
- Surveillance
- Tracking
- Job losses
- Misinformation
- Algorithmic bias
- Diversity

51

COMPUTING EDUCATION IN SCHOOL: CONCEPTUAL SHIFTS

52

PROBLEM SOLVING WORKFLOWS

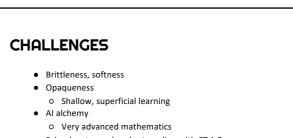
CT 1.0 (RULE-DRIVEN)	CT 2.0 (DATA-DRIVEN)
Formalize the problem	Describe the job and collect data from the intended context
Design an algorithmic solution	Filter and clean the data. Label the data
Implement a solution in a stepwise program	Train a model from the available data
Compile and execute the program	Evaluate and use the model

CONCEPTUAL CHANGES IN COMPUTING EDUCATION CT 1.0 CT 2.0 Models may display higher or lower Correctness can be formally proven confidence, efficiency Debugging: Tracking and tracing Evaluate the model wrt predictions Deductive problem-solving Inductive problem-solving Transparent structure Black-boxed Stepwise, deterministic, discrete Parallel, possibly nondeterministic flow of program through states passing data through a network Structured data Unstructured data

CONCEPTUAL CHANGES IN COMPUTING EDUCATION

СТ 1.0	CT 2.0
Reductionism	Emergence
Formal verification	Statistical measures
Black/glass box testing	Black box testing
No tinkering, toying, trial-and-error	Experimenting with data, parameters, hyperparameters
Prepare for worst-case complexity, optimize for average case	No time/space variance between passes of data through the network
Tedious to ensure portability	Straightforwardly portable

55



• Emerging topic: unrealistic expectations, misconceptions

56

