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Computer: Objec/ve and error free?



Brisha and Vernon,….

Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner: Machine Bias, ProPublica, 23.5.2016

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

…two convicted

criminals….



Who would do it again?



1 Danziger, S.; Levav, J. & Avnaim-Pesso, L.: “Extraneous factors in judicial decisions”, 

Proceedings of the NaGonal Academy of the Sciences, 2011 , 108 , 6889-6892

Humans –
so irra4onal!

• Study: less risky decisions 
the longer it has been since 
the last break 1.

• A large number of such 
studies seem to prove: 

• Humans are irrational and 
prejudiced.



ACLU (American Civil Liber4es Union) 
demans: 

2011

accurate data analysis to calculate 
the risk of offenders actually 

recidiva?ng and becoming a 
danger to society

2019

no accurate data analysis to 
calculate the risk of offenders 

actually recidivating and becoming 
a danger to society

Chettiar, I. M., & Gupta, V. (2011). Smart Reform is 

Possible: States Reducing Incarceration Rates and Costs 

While Protecting Communities. Available at SSRN 

1934415.

https://civilrights.org/2018/07/30/more-than-100-civil-

rights-digital-justice-and-community-based-organizations-

raise-concerns-about-pretrial-risk-assessment/



How can computers learn?



Experience-based learning

Behavior in video 

conferences : 

- In the beginning, 
people o>en got into 
each other's words.

- We learned to read the 

facial expressions and 
gestures of the 
parCcipants!
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Humans learn…

• through feedback

• through storing in a 
structure: the 

neurons and their 
connections

• through 
generalization of 
what has been 

learned.



Computers learn

For a computer to learn, it also 

needs a structure to store what it 
has learned.

OpCmally also through feedback.

It learns general rules.

Formulas
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Learning with formulas
Recidivism predic,on for (already convicted) criminals.



Data basis
• Machine learning methods use e.g.:

• Age at the first arrest

• Age of the delinquent

• Financial situa=on

• Criminal rela=ves

• Gender

• Type and number of previous convic=ons

• Time of the last criminal record

• …

• Important: At the training set, it is known whether the person has 

recidivated or not.
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Regression

15

The computer determines the weights and gets feedback on the extent 
to which the resulting score actually matches the (observed) behavior.

ω1 * number of previous convic1ons

- ω2 * days since the last arrest

+ ω3 (1 if male, 0 if not)

+ ω4 (1 if robbery, 0 if something else) + …

3 * number of previous convic1ons

- 2 * days since the last arrest

+ 2,5 (1 if male, 0 if not)

+ 3,5 (1 if robbery, 0 if something else) + …



Learning procedures
• Task: Given a set of known data, find paKerns that predict how 

something or someone will behave on new data.

• Algorithm builds an intermediate structure - based on known data -

which then generates predic?ons for new data.

• The algorithm is said to be "trained on the data".

New data

Algorithm Intermediate structure

Old data with 

observed 

behavior 

+ +
Prediction/

Decision
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Who will do it again?

Four times punishment

according to juvenile 

law (minor offenses)

2 armed 

Robberies, 

1 aPempted armed 

Robbery

Computer says:

High-risk category 8

Computer says:

Low-risk category 3

Julia Angwin, Jeff Larson, Surya MaPu and Lauren Kirchner: Machine Bias, ProPublica, 23.5.2016

hPps://www.propublica.org/arRcle/machine-bias-risk-assessments-in-criminal-sentencing



Who did it again?

Grand

the>

Julia Angwin, Jeff Larson, Surya MaPu and Lauren Kirchner: Machine Bias, ProPublica, 23.5.2016

hPps://www.propublica.org/arRcle/machine-bias-risk-assessments-in-criminal-sentencing



“Learning” with correlations
19



Algorithms of 

artificial 

intelligence...

20

• … are based on correlaRons of 

properRes with outcome to be 

predicted.  

• Basically algorithmically

legi=mized prejudices :  

• Out of 100 offenders who 

are "just like this one," 70 

got probaRon: …

• … suspend sentence to

probaRon

AI systems only provide 

probabili=es, not the truth.



How does a system learn from data?

DIY: 

Today, you are the

„Support Vector Machine“

21



0       1       2        3       4        5       6        7        8       9      10 

0
  

  
  

 1
  

  
  

 2
  

  
  

  
3

  
  

  
 4

  
  

  
  

5
  

  
  

 6
  

  
  

  
7

  
  

  
  

8
  

  
  

 9
  

  
  

1
0

 

Malicious criminal

Innocent ciRzen

Draw a dividing line between 

the smileys so that the red 

ones are separated from the 

green ones as good as 

possible. 

CongratulaRons: You have

trained a Support Vector

Machine!

The dividing line now serves 

as a rule for deciding whether 

a person is considered a 

criminal or appears to be 

innocent.



Malicious criminal

Innocent ciRzen

x

Judge Mrs. Miller:

5.5 Sanftosan
4.0 Kriminolin
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Malicious criminals

who remain undetected

Innocent ciRzens,

mistaken to be criminals

One of the possible 

dividing lines

All possible dividing lines 

generate errors:
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If both errors are considered 
equally bad, there are several 
optimal dividing lines with as 
few errors as possible.
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Are both types of 

error to be valued 

the same?





• SensiCvity

• Specificity

• Accuracy

•More than 25 
addiConal measures

Quality measures

28



1. Observa>on

What should be op>mized by an 

ar>ficial intelligence, 

is a societal decision!



Tax fraudsters not yet detected

Innocent in prison

Data quality
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Incorrect data point 

assignments affect the 

training of the Support 

Vector Machine and thus 

subsequent decisions



2. Observa>on

How well the machine learns is directly dependent

on the quality of the data.
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San>osan San>osan
Result:

In this fictional example, an optimal decision rule without error is found for 

each subset. 
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On the other hand, if we 

put both groups together, 

the trained Support 

Vector Machine 

discriminates males :

Two female criminals are 

considered innocent, and 

two innocent male 

ci?zens are considered 

criminals.



3. Observa>on

Protected informa>on can be important

in making beKer decisions.

Discrimina>on is not per se avoided

by withholding the informa>on.



3. Observation (cont.)

The legally protected property may be necessary

in order to make optimal decisions.
(Haeri & Zweig,2020; Hoffmann et al. 2022)
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Discrimination

• Discrimina?ons in 
training data are 
"learned along".

• If training data 
contains too liKle 
data about 
minori?es, their 

proper?es will not 
be "learned along".

37



Measuring discrimination

• Using fairness measure(s)

• Require (sta=s=cal) equality quality for 
subgroups.

• Buolamwini: Subgroups should at least 
have 80% of maximum values (Buolamwini, 

2017, S.49).

• Sensi=ve informa=on is required for 
tes=ng ↔ Data protec=on! 

• AXen=on: Most fairness measures 
contradict each other (Zweig & Kra@, 2018).

• There is no simple solu=on à societal 
decision (selec=on might even requires 
democra=c legi=macy in important 
cases.



Anyone always loses

By: MPCA Photos

https://www.flickr.com/photos/mpcaphotos/31655988501

https://creativecommons.org/licenses/by-nc/2.0/

https://www.flickr.com/photos/mpcaphotos/31655988501
https://www.flickr.com/photos/mpcaphotos/31655988501
https://creativecommons.org/licenses/by-nc/2.0/


4. Observa>on

What "fair" means is

a societal decision, 

but can also be shaped 

by corporate philosophy. 

40



Who is responsible?



OperaRonalisierung

Algorithm-

design
ImplementaRon

CollecRon of

data
Selection

of

training

data

Algorithm-

design
Implementation

Algorithm-

design
ImplementaRon

Collection of

data

Method

selecRon

Decision

system
Action

ScienRsts

Data Scientist

Person or

insRtuRon

Person or insRtuRon

Data

InterpretaRon 

of results

Feedback

Long chain of responsibilities



OperaRonalisierung
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Where can discrimination be introduced?
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Discrimina4on depends on the exact usage

• Divides unemployed into 3 classes:

• High chances of integra=on - no further measures needed.

• Medium chances of integra=on - with measures. 

• Low chances of integra=on - measures not useful.

>66% assigned probability

of meeting target criterion 1. 

to fulfill.

ALL OTHERS
< 25% assigned probability 

of meeting target criterion 3



Result: 

• Assigns higher risk 

to the elderly 
(>50), women, 

caregivers.

• DiscriminaAon?

• Depends on the 
usage!



Fair usage?

• The system is used to balance 
against societal discriminina=on

• The overall system can only have 
a balancing effect if the ADM 
system reflects actual 
discriminates.

• According to the AMAS director, 
people disadvantaged by the 
labor market are more o^en 
supported now [1].

[1] hPps://www.johanneskopf.at/2019/09/24/offener-brief-fr-prof/ 



Important: Social 

compatibility rules 
(“Sozialverträglichkeitsr

egeln”)

• Classifica=on must be 
discussed with ci=zen in 
dialogue.

• Only suppor=ve use.

• Recalculated every year.

• Only data from the last 4 
years.

Gamper, Kernbeiß & Wagner-Pinter: „Das Assistenzsystem AMAS –

Zweck, Grundlagen, Anwendung (Dokumentation), Mai 2020, 

http://www.forschungsnetzwerk.at/downloadpub/2020_Assistenzsystem_AMAS-dokumentation.pdf

http://www.forschungsnetzwerk.at/downloadpub/2020_Assistenzsystem_AMAS-dokumentation.pdf


Diskussion
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